
movements involved in sports.10 This technology can
be used to (a) identify muscles that are activated and
(b) assess the extent of activation of each muscle relative
to that muscle’s maximum capacity to perform
work.9 10 Information obtained from functional MRI
measurements can be used to compile individual
databases of each athlete’s muscle activation patterns
when he or she is at peak performance. This information
can be valuable if the athlete is injured or if there is a pro-
nounced decline in peak performance. Functional MRI
measurements of identical exercise obtained under such
conditions, when compared with information from the
athlete’s database, could provide insight into injury
induced changes in muscle activation patterns. Functional
MRI may also be used to monitor an athlete’s recovery
from an injury. As with MRS, MRI provides a measure of
an athlete’s physical conditioning at a specific point in
time.

In summary, it is possible that, by combining MRI and
MRS with more traditional methods, we may create an
organised training and evaluation tool capable of elevating
human performance to a new level. At this level we would
be able to (a) minimise instances of overtraining and
therefore reduce overtraining injuries, (b) optimise event
readiness thereby reducing injuries that are associated
with fatigue during an event, and (c) optimise injury
recovery programmes so as to reduce the incidence

of reinjury. These reductions could make a significant
impact on sports related injuries in elite and professional
athletes.
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Stretching before exercise: an evidence based approach

Clinicians are under increasing pressure to base their treat-
ment of patients on research findings—that is, to practice
evidence based medicine.1 Although some authors argue
that only research from human randomised clinical trials
(RCTs) should be used to determine clinical
management,2 an alternative is to consider the study design
(RCT, cohort, basic science, etc) as one of many variables,
and that no evidence should be discarded a priori. In other
words, the careful interpretation of all evidence is, and has
always been, the real art of medicine.3 This editorial
explores these concepts using the sport medicine example
of promoting stretching before exercise to prevent injury.
In summary, a previous critical review of both clinical and
basic science literature suggested that such stretching
would not prevent injury.4 This conclusion was subse-
quently supported by a large RCT published five months
later.5 Had the review relied only on previous RCT data, or
even RCT and cohort data, the conclusions would likely
have been the opposite, and incorrect.

Was there ever any evidence to suggest that stretching
before exercise prevents injury? In 1983 Ekstrand et al6

found that a group of elite soccer teams randomised to an
intervention of warming up and stretching before exercise,
leg guards, special shoes, taping ankles, controlled
rehabilitation, education, and close supervision had 75%
fewer injuries than the control group. There was one other
RCT and a quasi-experimental study that also supported
this conclusion,7 8 both using at least warm up as a
co-intervention.

Clinical evidence suggesting that stretching before exer-
cise does not prevent injuries has also been reported. van
Mechelen9 published an RCT showing that the interven-
tion had no eVect, but many subjects were non-compliant.
If we look at “less strong evidence”, both Walter et al10 and

Macera et al11 published cohort studies that suggested that
stretching before exercise was not beneficial, and there
have been several cross sectional studies as well.12 13 Of
course, there were significant limitations to all of these
studies.

In summary, the RCTs could easily be interpreted to
suggest a probable eVect using strict evidence based medi-
cine guidelines. The use of cohort studies may weaken the
conclusion, but would be unlikely to reverse it. Under-
standing the basic scientific research allows one to put this
clinical evidence into perspective and explain results that
may appear contradictory.

Firstly, some people believe that a compliant muscle is
less likely to be injured. From the basic science research, we
find that an increase in tissue compliance due to
temperature,14 immobilisation,15 or fatigue16 17 is associated
with a decreased ability to absorb energy. Although this is
not the equivalent of stretching, no basic science research
shows that an increase in compliance is associated with a
greater ability to absorb energy. Secondly, most injuries are
believed to occur during eccentric contractions,18 which
can cause damage within the normal range of motion
because of heterogeneity of sarcomere lengths.19–22 If
injuries usually occur within the normal range of motion,
why would an increased range of motion prevent injuries?
Thirdly, even mild stretching can cause damage at the
cytoskeletal level.23 Fourthly, stretching somehow increases
tolerance to pain—that is, it has an analgesic eVect.24–26 It
does not seem prudent to decrease one’s tolerance to pain,
possibly create some damage at the cytoskeletal level, and
then exercise this damaged anaesthetised muscle. Of note,
there is no basic science evidence to suggest that stretching
would decrease injuries. Fifthly, there are some basic
science data to suggest that a warm up may help to prevent
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injuries.27 Understanding these principles, we can now
explain the apparent contradiction in the clinical literature.
Re-examining the RCTs that support stretching before
exercise, one finds that all of them included at least one
other eVective co-intervention—for example, warm up, leg
guards, etc.6–8 Therefore it is not surprising that these
RCTs found less injuries in the intervention group. On the
other hand, the cohort studies,10 11 and the RCT by van
Mechelen et al,9 controlled for these co-interventions in the
analysis stage. Therefore, although formally a “weaker
design”, the studies suggesting that stretching before exer-
cise is not beneficial should be weighted as stronger
because the analysis was more appropriate. However, this
was only recognised because the basic science was
reviewed.

In conclusion, the strength of any literature review can
be gauged by its ability to predict what future research
studies eventually show. The inclusion of all the evidence
available led to a conclusion that was supported by a sub-
sequent, well conducted, large RCT. Had the evidence in
the review article4 been limited to only RCTs as proposed
by some authors, the conclusion would have probably been
diVerent, and inaccurate. This may be one reason why
many meta-analyses fail to predict the outcome of future
large RCTs. Further, we must remember that much of
medicine in general, and sport medicine in particular, is
based on historical precedent. When historical precedents
are based solely on hypotheses that have more recently
been proved incorrect, the clinician must choose to (a)
continue treatment on the basis of a known incorrect idea
of pathophysiology or (b) change to a treatment based on
current knowledge of pathophysiology and pathobiology.
Of course, the potential side eVects of any new treatment
(likely to be unknown) must also be weighed against the
potential side eVects of the historical treatment (more
likely to be known). The art, and even science, of medicine
then becomes the ability to weigh all the available
information at hand without discriminating a priori, and to
be able to judge which is most appropriate for the patient
seated across the desk.
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